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In the field of industrial drying, a recent innovation has exploited the occurrence of 
Marangoni effects in such a way that the resultant free-surface flow enhances the 
drying process. To this end, alcohol vapour, soluble in water, is introduced above a 
drying film and as a result of diffusion through the air and water phases a favourable 
concentration gradient gives rise to the required shear flow. We consider here a simple 
process driven by this mechanism, and by means of asymptotic simplification and the 
concepts of singular perturbation theory a leading-order approximation is obtained in 
which the alcohol concentration in the water is a specified function of space and time. 
The evolution of the free surface thus reduces to a single nonlinear partial differential 
equation of a similar form to the Korteweg-de Vries and Burgers equations, higher- 
derivative terms corresponding to surface tension and gravity effects. Numerical 
solutions of this equation are obtained and are compared to the application of first 
order nonlinear kinematic wave theory with corresponding shock solutions. 

1. Introduction 
If a piece of cotton-wool, saturated with alcohol, is held above the undisturbed 

surface of a thin film of water, an axisymmetric disturbance occurs in the water in the 
formation of a ring-shaped wave spreading out from the centre. The observed flow 
pattern results from the diffusion of alcohol vapour through the air above the film and 
its subsequent diffusion through the water phase, this giving rise to concentration- 
dependent surface tension gradients and a corresponding shear-induced flow generally 
referred to as Marangoni flow. At the Philips Research Laboratories in Eindhoven, 
these phenomena have recently been exploited for the purpose of speeding up and 
improving a number of drying processes basically by increasing the maximum speed of 
dewetting. The term ‘Marangoni drying’ has been coined for this process, as in 
Leenaars, Huethorst & Van Oekel (1991), which has the added advantage of being 
extremely clean : a prerequisite in the microprocessor industry. 

If, for definiteness, we consider the case of a silicon wafer being withdrawn from a 
pool of water (figure l), then, given good wetting properties (zero contact angle), a thin 
film of liquid will be entrained on the wafer surface. If, however, the process is carried 
out in the presence of di-acetone alcohol, the entrained film disappears back into the 
water and the wafer can be withdrawn almost completely dry. Qualitatively, the 
mechanism of the drying process arises from the fact that a favourable alcohol 
concentration gradient is set up near the three-phase line (literally the line at which the 
three phases - solid, liquid and gas - meet and thus signifying the demarcation line 

t Current address : Department of Mathematics, University of Limerick, Ireland. 



650 S.  B. G .  M. O’Brien 

Alcohol Si wafer 

i/sOurce 

Water 

FIGURE 1. Schematic drawing of Marangoni drying process. 

between the dry and wet parts of the wafer). A higher concentration generally gives rise 
to a lower surface tension (see e.g. figure 3 which is a surface tension/concentration 
curve for n-butanol) so the direction of the surface tension gradient and hence the shear 
stress which is the driving force of the flow is down the film. Fluid thus flows back down 
into the bath and drying is enhanced. 

A further application of the same principle can be used during the spin drying of 
substrates. During spinning, centrifugal forces give rise to an ever-thinning film but 
removal of the last layer of fluid is traditionally carried out by evaporation. This has 
the disadvantage that dirt particles originally suspended in the water tend to be left 
behind on the substrate. If instead alcohol vapour is introduced above the fluid 
film, it can be observed that the film breaks up into small droplets and rivulets which 
are more easily spun off the substrate carrying impurities with them. In this case the 
surface-tension gradients presumably originate as a result of height fluctuations which 
arise in the film during the spinning. Even if the alcohol flux across the surface is more 
or less constant, gradients can still arise which ostensibly give rise to instability in the 
fluid layer : small fluctuations becoming ever larger and eventually developing into 
droplets. 

Marangoni-induced flow has been recognized for some time. The well-known 
‘kicking’ of pendant drops (Haydon 1958) and ‘tears of strong wine’ effect whereby 
wine droplets appear mysteriously on the sides of glasses above the liquid surface was 
first explained by Thomson (1855) though historical credit has gone to Marangoni 
(1871). This phenomenon bears strong resemblance to the drying problem enunciated 
above in that the surface-tension gradients are produced by diffusion of solute into (or 
out of) a solution. In the case of the originally static meniscus in a wine glass, 
evaporation of alcohol out of the film gives rise to a surface tension gradient in the 
direction up the side of the glass. A thin film thus emerges on the side of the glass above 
the visible fluid meniscus, giving rise ultimately to the formation of visible droplets 
which drain back down to the bulk fluid. A further related problem is the drying of 
paints as considered by Overdiep (1986) who has investigated the problem of whether 
a paint surface will be conformal to its undersurface or flat irrespective of the form of 
the latter. He showed that the final film thickness is dependent on a struggle between 
two factors: the surface tension of the film which favours a flat surface and gradients 
in the surface tension which tend to result in a conformal coating. One of his results 
is that the slower a paint film dries out, the flatter the final film, as gradients then 
become negligible. 
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Generally speaking, far more attention has been paid to Marangoni instabilities and 

the interfacial turbulence that results as, for example, in Scriven & Sternling (1960), or 
to Marangoni flows which arise owing to temperature fluctuations rather than 
variations in the concentration (Myshkis 1986, chap. 9). A review of the physics 
involved is given in Levich & Krylov (1969). Pimputkar & Ostrach (1980) consider film 
flows induced by temperature gradients, but they neglect the smoothing effects of 
surface tension and, by assuming that gravity smoothing effects are O( l), are restricted 
to very small curvature situations. In the current paper we are concerned with 
Marangoni effects which arise due to the presence of a dissolved alcohol and the 
surface-tension gradients arising from adsorption processes. Adsorption phenomena 
are not that well understood at present so we use a highly simplified model. In 
considering a system where the surfactant dissolves fully in the liquid medium, we are 
in a sense continuing the work of Gaver & Grotberg (1990), Halpern & Grotberg 
(1992) and Jensen & Grotberg (1992) who restricted attention to liquid surfactants. 
From a practical point of view, using a vapour allows one to exercise more control over 
the Marangoni stresses as the distribution of the alcohol can be controlled by 
introduction of extra alcohol sources (see for example figure 11 of this paper). One thus 
has better possibilities for controlling the flow. The application described in Leenaars 
et al. (1991) appears to be the first time that Marangoni effects have been exploited to 
improve a drying process though they have previously been used to enhance mass 
transfer in two-phase contact units (Patberg et al. 1983). 

In the course of the paper we demonstrate that Maragoni flow in a thin horizontal 
film can be reduced to a single nonlinear evolution equation for the free surface which 
shows some similarity to the Korteweg-de Vries/Burgers equation family in that shock 
formation is prevented by diffusion and dispersion effects (physically traceable to 
surface-tension and gravity effects). Benney (1966) showed that flow in a thin film on 
an inclined plane reduces precisely to the Korteweg-de Vries or Burgers equation in 
certain limiting cases. In the present paper we show that neglecting the higher- 
derivative effects gives a reasonable description of the flow even in the case where the 
insertion of shocks according to kinematic wave theory becomes necessary. In Q$2-8 we 
derive the basic equations describing the flow; $9 is a smoothing layer analysis for those 
cases where wave steepening occurs; Q 10 considers some approximate solutions; Q 1 1 
and, in particular $ 1 1 .I describes the numerical solutions of most interest from the fluid 
mechanics point of view; 5 11.2 examines numerically the effects of smoothing; and, 
finally, Q 12 contains closing remarks. 

2. Derivation of equations 
We consider first the problem described at the beginning of the paper. We thus have 

a thin horizontal film of water above which a line source of volatile surfactant is placed 
(see figure 2). Transport of alcohol through the air is governed by a diffusion equation 
(convection effects are neglected) while in the water film the flow is driven by the shear 
stress on the free surface as the alcohol spreads by diffusion and convection. The Stokes 
equations describe the flow problem; the liquid (water) is assumed incompressible. The 
relevant equations are 

(1 a) 
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FIGURE 2. Geometry of spreading problem. 

where p* is the pressure, u* = (u*, u*) is fluid velocity in the (x*, z*)-directions, p is the 
dynamic viscosity (it is assumed that the viscosity of the solution is unaffected by the 
presence of the alcohol), p is the liquid density and g is gravitational acceleration. On 
the free surface z* = h*(x*, t*) we have 

t . ( v n )  = -$.V*C*, dY* 
dC 

i.e. a concentration-dependent shear stress is exerted on the free surface, y* = 
y*(C*) being the local surface tension, C* being the alcohol concentration in the liquid 
just under the interface in the so-called subsurface; T is the stress tensor in the liquid 
and t , n  are local tangential and normal vectors to the free surface. The kinematic 
condition on z* = h* is 

ah* = v* -  * = 0, i.e. ~ 24 - 9  Dt* at* ax* 
ah* D(z* - h*) 

(3) 

while on the substrate noslip yields 

u* = O  on z* = O .  (4) 
The normal stress condition at the free surface, z* = h*(x*, t*) is 

ne(7.n) = y*(C*)@*(x*, t*);  @* = h$%*/(l +h:$, ( 5 )  

where @* represents the local curvature of the air/water interface. 
For a liquid/gas system containing a third soluble component in equilibrium, there 

is a discontinuity in the solute concentration across the phase interface. The surface 
tension of the solution is obtained from the so-called adsorption isotherm and the 
Gibbs’ equation. The solvent molecules migrate towards the interface in order to 
minimize the free energy: this adsorption of molecules at the interface gives rise to a 
surface concentration that is higher than the bulk concentration and causes a 
subsequent change in surface tension. If the system is not in equilibrium the situation 
becomes more complicated as the dynamic surface concentrations cannot generally be 
obtained from a consideration of the diffusion through the two phases; in addition a 
time-dependent adsorption model is required. Hansen ( 1  960) assumes that the surface 
layer is always in equilibrium with the sublayer directly underneath: thus a continual 
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quasi-equilibrium exists and the rate of adsorption is determined by the diffusion 
through the bulk phases, no further barriers existing. The equilibrium adsorption 
isotherms can thus be used. This is the approach used here. 

For the alcohol transport in the air, we have 

where C: is alcohol concentration in the air and D, is the diffusion constant for alcohol 
vapour in air. 

where 6 is the Dirac distribution, L is distance between the source and the undisturbed 
liquid free surface (see figure 2), H is initial film thickness, T is a timescale, and A, a 
suitable dimensional constant, represents a source term which is elaborated later. In the 
liquid film the alcohol transport equation is 

z* = hJ(x*/L, { y * - L - H } / L ) J ( t * / T ) ,  

where C* denotes alcohol concentration in the film, D, the diffusion constant for 
alcohol in the liquid and u* is the velocity vector (u*, u*). At the liquid/gas free surface 
y* = h*(x*, t*), we have 

C: = KC*;  Dg* ac * = Di-, ac* 
an 

K representing the partition coefficient at the interface. On the substrate we have a no- 
flux condition: 

-- - 0  on z* = O .  a c*  
az* (9) 

Note that we use a different vertical coordinate (z*) beneath the liquid surface as the 
characteristic vertical lengthscale in the water is different than in the gas (denoted y*).  
The problem, as it stands, is complicated by the coupling of the flow and alcohol 
transport problems. We thus first seek simplifications by means of scaling arguments. 

3. Scaling of the problem 

variables are dimensional) : 
We non-dimensionalize all variables according to the following scales (starred 

h* h = -  
H ’  

X* Y* Z* 
Y = -  z = -  L ’  L ’  H ’  

x=-  

The lengthscale L is a characteristic scale imposed by the alcohol source and is taken 
to be the distance between source and film, H is the initial film thickness, C,, is a 
characteristic concentration obtained from a surface-tension curve as in figure 3, yo is 
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FIGURE 3. Surface tension/concentration curve for n-butanol. 
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FIGURE 4. Dimensionless surface tension/concentration curve for n-butanol : 
--+--, experimental; -, curve fit. 

the surface tension of pure water, x is the so-called spreading pressure defined by x = 
yo-ys where ys is the minimum surface tension (i.e. the surface tension of pure 
surfactant) apparent in figure 3. 

As the quantities in figure 3 are dimensional, some care must be taken in transforming 
to dimensionless quantities. For example the relationship between y* and C* might be 
written y* =f(C*) but this relationship is only correct for one set of units. By non- 
dimensionalizing y* and C* we obtain a relationship such as y = g(C)  which is correct 
in our chosen set of units, i.e. the reference scales for C* and y*. In the course of the 
analysis, it is necessary to have expressions for y(C) and its derivatives with respect to 
C, i.e. ye, yCc, etc. If we take the non-dimensional form of figure 3, we obtain a curve 
as shown in figure 4, noting that there is a change in the sign of the slope due to the 
particular scaling chosen (y*(C*) and y(C) have opposite signs in (10)). Applying an 
exponential least-squares curve fit to this data gives the result y(C) = 1 - 1.02exp 
(- 3.6C) for n-butanol. The curve fit is also shown in figure 4. In view of this it is not 
unreasonable to represent a universal alcohol by the curve y(C) = 1 -exp ( -SC) ,  
where S is varied to represent different alcohols. For example, ethanol (respectively n- 
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hexanol) shows a less (more) extreme surface-tension curve than n-butanol and this will 
be reflected in a smaller (larger) value of S.  The surface-tension variation for ethanol 
is thus considerably smaller and it gives rise to significantly smaller disturbances. 

The scale for the pressure is obtained by comparison of the two leading-order terms 
in (1 a) and it is noteworthy that this scale varies inversely with the film thickness. 
Physically this means that the pressure developed in a thin film by the Marangoni 
stresses is much larger than, say, the hydrostatic pressure. This is the reason why the 
process works so well : the driving forces are relatively large. The scale for the velocity 
is obtained by an estimate of the velocity on the free surface in (1) without surface 
tension (dpldx = 0, i.e. Couette flow) when the shear stress is maximal, and the 
timescale follows directly from this. An alternative diffusion timescale would be L2/D,  
but this turns out to be numerically of the same order as the chosen scale. Note that 
for water ,u = lop3 kg rn-l s-l, x M 4 x lo-' Nm-l, while D, x lop5 m2 s-l and H is 
generally not smaller than 1 pm. At this point, for reference, we also include typical 
values for the other parameters in the problem : Co from figure 3 is about 900 mole m-3 
while yo for water is about 7.26 x lo-' Nm-', D, x lo-' m2 s-l, L 2 lop3 m. This latter 
lengthscale represents distance from the source to the free surface (see figure 2). 

Equations (1)-(9) in scaled form become 

with boundary conditions 

(12) 

u = O  on z = O ,  (13) 

au 
-= -yyz+O(s2)  aZ on z = h ( x , t )  

where in (12), it is understood that ys = ycCs; 

with r as defined in (lo), i.e. r ( C )  = y(C)-y , /x;  
p = c*ZXzz on z = h(x, r )  

with boundary conditions 

In (16) and (17), C has been rescaled such that KC-t  C where K is assumed O(1). The 
case where K 9 1 would be essentially the same while K 4 1 would require a slightly 
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different treatment. In addition E = H / L ,  B = pgL2/x  is a Bond number indicating the 
relative importance of gravity and surface tension, D = D,/Dl, and Pl = xH/D,p ,  
pZ = x H / D l p ,  the last two parameters being PCclet numbers though Pl compares 
properties in two different phases. P, is a measure of the relative importance of 
convection and diffusion in the liquid. 

4. Limiting cases 
There are a number of simplifications which we can make to (1 1)-(19) by considering 

limiting processes. Letting Pl --f 0 or 00 in (1 5 )  yields a quasi-static or time-independent 
C, respectively. More interestingly, letting e2P2 - to  in (16) yields a situation where 
convection effects in the film are dominated by diffusion and the alcohol transport 
problem in the film is considerably simplified. The case where sap2 -+ co with e2 held 
fixed yields a first-order partial differential equation for the alcohol concentration. 
Simplification of (17) should be approached with care because if, for example, we 
consider ED + 0 or co then such cases can physically correspond to either liquid or solid 
being a perfect ‘conductor’. Using the parameter values of $ 3 as a rough guide suggests 
that a relevant limiting situation for the problem at hand is given by E -+ 0, e2Pz -t 0 ; 
eD = O(1); e2B+ 0. The rest of the paper considers this situation, and slight variations 
on it, in some detail so if the parameters in a particular instance numerically satisfy the 
conditions of the previous sentence, the analysis which follows is expected to be valid. 

5. The leading-order flow problem 
We now proceed to simplify the flow equations (1 1H14) by exploiting the smallness 

of the aspect ratio e so developing a lubrication approximation for the flow. At this 
point we stress that the intention of the analysis that follows is to obtain a leading- 
order approximation to the problem stated in $4 with an error o(1). As will also become 
clear, this straightforward perturbation represents a singular limit in that certain terms 
which formally appear to be o(1) change order and must be included in the 0(1) 
analysis. 

We now seek solutions to (1 1 a, b) in the form 

u = uo+E2u,; u = v0+e2u,; p =p0+e2p1.  (20) 

2.4, = - yx z ;  uo = hx. z2;  Po = 0, (2 1 a-c) 

(22 a) 
(22b) 

p1 = Th,,+B(h-z)+O(N), (22 c) 

To zero order we easily obtain 

while to first order we get 
u1 = rhxxx(+z2 - hz) + Bh,(iz2 - hz) + O ( N ) ,  

0, = rhZz2,(;z3) ++Thxxx h, z2 - BhxX(;z3 -+hz2) ++Bhi 2’ + O(N) ,  

where the notation O(N)  is used to indicate terms making contributions which are 
always strictly o(1) and thus remain negligible even in the smoothing layer. It is 
important to note that in deriving (22), we have used the fact that y, yx, yxx etc. all 
remain O( 1) which may be verified by examining (28) bearing in mind that C(x, t )  is 
correct to O(E). We also comment that the correctness of (22) only becomes completely 
obvious after the smoothing-layer analysis of $9 has been carried out. 

To verify that the basic idea is correct, most of the numerical solutions of $11.2.2 
were also carried out while including some of the O ( N )  terms of (22). The results were 
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indistinguishable from those obtained neglecting all O ( N )  terms. In (22), terms 
containing the factor B give rise to gravity smoothing, while O(e2) terms containing 
higher derivatives of h will cause similar surface-tension effects. The O(B) terms can 
only play a role at leading order if B is large enough, as discussed in 59. 

6. Asymptotic simplification of the diffusion problem 
The simplified version of (16) is now just 

a2c laZ2  = o(E2, € 2 ~ ~ )  (23) 

ac/az = O ( 2 ,  2 P Z )  (24) 

and this in conjunction with the boundary condition (18) yields 

throughout the liquid film. The film is thus thin enough that diffusion in the vertical 
direction occurs so quickly that the concentration gradient in this direction is always 
negligible. Boundary conditions (17) now become 

c, = c, acg/ay = o(1) (25a, b) 
on the free surface z = h(x, t ) ,  y = E ~ ( x ,  t). In 54 we suggested that sD = O(1) would be 
an appropriate limiting value, in which case the error in (25 b) would be O(s2). For the 
leading-order approximation which we seek, this correction is academic. From (24) 
and (25a), the alcohol concentration in the liquid is just 

C(x, t )  = Cg(x, ~ h ,  t )  + O(e2, 2 P 2 )  or C(x, t )  = C&, 0, t )  + O(s) (26) 
using a Taylor series expansion. This greatly simplifies the problem as it means that the 
film is thin enough for the no-penetration condition pertaining to the alcohol at the 
substrate to be 'moved' to the free liquid surface. We thus reduce to a search for a 
solution of (1 1)-(14) with C and C, known everywhere in space and for all time. Owing 
to this uncoupling, the evolution of the free surface reduces to a single partial 
differential equation (of fourth order). 

Note further that the results of this section would also be valid for the limiting 
situation ED %- 1, s2p2 = O(l), which might occur if D, was an order of magnitude 
smaller (= ma s-l). The point is that even though the O ( E ~ P ~ )  terms of (16) 
complicate the alcohol transport problem in the liquid layer, only the concentration of 
alcohol in the interface is required to determine the Marangoni forces. For large ED, 
(17) indicates that from the point of view of the air, aCg/3y 4 1 at the free surface 
regardless of what happens in the water and so the diffusion problem in the air still 
reduces to that described above. 

7. Evolution of the free surface 

(22) and may be written as 
The time-dependent evolution of the free-surface profile is given by (19), (21) and 

h, = ?jy,, h2 + y, hh, + E'B(&, h3 + h2hE) + ~ ~ r ( $ h , , , ~  h3 + h,,, h2h,). (27) 
Of course (27), an evolution equation for h, looks rather unappealing being highly 
nonlinear and having rather complicated coefficients. Further progress can only be 
made by numerical means. Equation (27) can be regarded as a sort of generalized 
Korteweg-de Vries/Burgers equation though it also contains some fourth-derivative 
diffusive terms. If we initially ignore the terms of O(E', e2B) we have the sort of equation 
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that occurs in the study of nonlinear kinematic waves (Whitham 1974) which is 
physically what we might expect. We expect to get a wave moving in both directions 
away from the z-axis. The alcohol concentration in the film has a maximum at x = 0 
and decreases monotonically as 1x1 increases. Figure 3 shows that a high alcohol 
concentration in the water yields a relatively lower surface tension so the surface 
tension increases with increasing 1x1. Flow occurs in the direction of increasing surface 
tension so a twin wave can be expected to move out away from the z-axis. To verify 
that this is indeed the effect of the first-order terms, we will derive some approximate 
solutions in 5 10, before proceeding to full numerical solutions in 9 1 1 .  

We can get some insight into the formation of shocks occurring in the reduced form 
of (27) by considering the theoretical limiting case of large PI. In this case, the timescale 
of the film response is much shorter than the diffusion timescale in the gas. Thus, on 
the timescale of the flow in the film, changes in surface tension are slow so y, yx,  yx. 
are approximately time-independent. Using the transformation 

(27) with s2B = E = 0 becomes 
Tt +WE = 0 

with initial condition y([, t = 0) = Iy,lil,+E. This represents a nonlinear wave moving 
with wave speed 7 and whether it breaks or not depends entirely on the initial data and 
in particular whether q&[, 0) changes sign at any point. But rlE([, 0) = -hz, = -+(y,), 
so if -yz has a turning point (maximum) in 0 < x < 00 for all times 0 < t < co (as is 
the case for example in the special solutions examined in the next section) then shocks 
will always form (and breaking first occurs when 2/(7,,) has its smallest positive value 
as in Whitham 1974). The physical relevance of -ys having a maximum is that the 
velocity to leading order on the free surface is proportional to - yz  (see (21 a)), and if 
this velocity is decreasing at any point for increasing x, liquid from behind tends to 
catch up and shocks form. This is further discussed in 810. Note finally that (27) is 
correct for all surfactant distributions: we now consider the case of a single line source. 

8. Solution for the case of a line source of surfactant 
We now specialize the problem of surfactant diffusion through the air to that 

represented schematically in figure 2 where a line source of surfactant has been placed 
at (0, l), obtaining the following approximate solution: 

In the liquid film the concentration is independent of the vertical coordinate as 
evidenced by (24), and from (26) we get 

C(x, t )  = -exp 2A {-(xDq:1)Pl 
t 

where A is a dimensi,onless constant representing the strength of the source. If the total 
amount of alcohol deposited in the air phase at t* = 0 is M* moles, then we define 
M = M*/(L2Co) and A is related to M by 

In the remainder of the paper the influence of the alcohol source represented in this 
section will be considered in some detail. 
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9. Smoothing-layer equations 
As already pointed out in 95, the asymptotic simplifications of this paper are based 

on the presumption of smoothing-layer behaviour in regions where the free-surface 
slope becomes large. The numerical solutions of 0 11 show that the first-order terms of 
(27) develop shocks. These can be smoothed out by the higher-derivative terms. For 
such terms formally to have any influence on (27), we require a rescaling of x. A 
suitable smoothing-layer coordinate is given by 

x - x,( t )  = st, (31) 
as suggested by Kevorkian & Cole (1981). We thus transform coordinates from (x, t )  
to (6, t )  according to the following rules: 

where the dot signifies differentiation with respect to t .  In the smoothing-layer region, 
the x-coordinate is stretched as in (31) and an inner equation and solution obtained. 
The inner and outer solutions (obtained from (27) without higher derivatives) can then 
be matched numerically as in Moriarty, Schwartz & Tuck (1991). As numerical 
solutions of the full equation (27) are not difficult to find, we only attempt to write 
down the smoothing-layer equations. In doing so, we will be able to provide 
justification for the assumptions of $ 5 ,  

We consider first the richest possible smoothing-layer structure where gravity and 
surface tension provide equal smoothing effects. We have already commented in 95 
that (29) and (31) can be used to show that y2( = yc C J ,  yzz and higher derivatives are 
O(1) in the smoothing layer. This is very significant because it means that only 
derivatives of h can give rise to 'scaled up' terms in this layer. This is also the origin 
of the O(N) terms of 95 : in order to identify terms of relevance in the smoothing layer, 
it is only necessary to examine derivatives of h. This is also physically justified: 
derivatives of y produce the Marangoni driving force for the flow; this would not be 
expected to dramatically increase where the wave steepens. Using (32) and (27) we thus 
arrive at 

In this situation, a dominant balance with gravity and surface-tension forces of the 

(34) 
same order arises when 

and the smoothing-layer equation is given by 

(35) 
Derivatives of y have been written in terms of x to emphasize that y does not change 
order in the smoothing layer. 

Proceeding to the case where smoothing is caused predominantly by surface tension, 
we take B = 0(1) or B + 1 and a dominant balance is obtained when 

B = O(e-i); 6 = ei, 

- is( t )  ht = yz hh, + ihg h3 + h2h,2 + I'($hgc, h3 + h2hfhga, 

6 = &, (36) 

(37) 

the relevant smoothing-layer equation being 

- i s ( t )  h, = yz hh, + T(;ht,& h3 + h2h, h&).  
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Note that the numerical solutions appropriate to this case (figure 14) suggest that 
smoothing effects are not just restricted to a thin layer. However, we would still expect 
the highest-derivative terms to be the most relevant. In the case where smoothing is 
only caused by gravity effects, we take E +  0, s2B finite. The required smoothing-layer 
scaling occurs when 

giving rise to the following smoothing-layer equation : 
S = e2B, (38) 

-X,(t)hc = yxhh,+ih,h3+h2h,2. (39) 

10. Small-slope approximations 
We consider three situations which are all quite similar in their requirement of small 

wave slope. With this in mind, we neglect the higher-derivative terms and consider just 
the O(1) terms of (27) which we write as 

h, = iyzx  h 2 + y ,  hh, + O(e2,e2B).  (40) 

(41) 
where p is some small number. By small we mean that in figure 4, where y = y(C), if 
the concentration varies from its original value C = 0 by an amount of OU), then the 
y(C)/C curve can be linearized about the zero value yo = y(C = 0). In this range we 
thus have y = SC; yc = S ;  ycc = 0, where S is the initial slope of the surface-tension 
curve. Note that the sign of ye is different from that of y,*. due to the choice of scales 
(10). If the undisturbed film is given by h(x,O) = 1, then we obtain the following 
equation for h,: 

For small concentrations we write 

C(X, t )  = 0 + / ~ C , ( X ,  t ) ;  h(x, t )  = h(x, 0) +@,(x,  t),  

where a2C/ax2 is obtained from (29) with A = p. We thus obtain the result 

h, = -exp{ PI s -:}[~(7+1)-1], Plx2 a 2a (43) 

with a = +(x2 + 1) 4, This solution is generated exclusively by the first term on the 
right-hand side of (40). 

We can obtain a similar asymptotic result, useful for checking numerical results, by 
examining the small-time behaviour of (40). For small times we expect small deviations 
in the film shape from its undisturbed profile. We scale as follows: 

t = p T ;  h = l + H ,  (44) 
where /3 is an arbitrary small parameter. The scale of the perturbation H(x, t )  in the film 
is as yet unknown but will certainly be o(1). Equation (40) now becomes 

yielding the solution 
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FIGURE 5. (a) Comparison of perturbation and numerical solutions. A = 1, PI = 1, S = 2. Numerical : 
+, t = 0.05; A, t = 0.07; 0, t = 0.3. Equation (46): ---, t = 0.05; Equation (47): -.-, t = 0.07; 
-. .- , t = 0.3. (b) Comparison of small-S perturbation and numerical solutions. A = 1, PI = 4, 
S = 0.2. Numerical: +, t = 0.6; A, t = 1.2; 0, t = 1.8. Equations (50k(53): -, I = 0.6; ---, 
t = 1.2; ---, t = 1.8. 

where a = a(x) is as defined above. This is very similar to (43) : the disturbance in this 
instance being exponentially small in P. Checking back to (45) it is easily verified, a 
posteriori, that the neglected terms are indeed negligible. Some results are plotted in 
figure 5 (a)  comparing (46) with numerical solutions (obtained by solving the complete 
version of (27)). 

It is useful at this point to derive some results for the alcohol concentration in the 
film. The maximum value of the concentration occurs when aC/ax = 0 and W / a t  = 
0. From (29) it is easy to show that this occurs when x = 0 (which is intuitively obvious) 
and t = $4. The maximum value is given by 8A exp (- l)/&. When A = 1, 4 = 1 ,  
C,,, = 2.943, while for A = 1, PI = 4, C,,, = 0.736. For the first of these situations 
this indicates that at the very least we require PT -+ 0.25 in order for (46) to be valid, 
i.e. in order that C(x, t )  = o(1). In fact, figure 5 shows that the perturbation solution 
(46) is good for PT = 0.05. However, it turns out that it deviates considerably for 
PT = 0.07. In particular, the error in the solution at the lowest point of the film is a 
considerable overestimate. This can easily be understood by consideration of figure 4. 
The driving force of the flow is determined by the gradient of the surface tension; this 
is largest for small concentrations but for high enough concentrations becomes small. 
As the perturbation solution uses the initial slope as a first estimate it clearly will 
overestimate the flow for larger concentrations. We can improve the small-time 
estimate by using the full form of the surface-tension curve in the form: y(C) = 
1 -exp (- S C )  as already discussed. In this instance we obtain the following equation 
for H(x, t ) :  

- +exp[-SC(x, t)] S--S2 - { Ex: (3} i3H -- 
at (47) 

This equation can be solved by numerical quadrature and the improved estimate at 
t = 0.07 as shown in figure 5(a) is indistinguishable from the numerical solution. In 
fact (47) gives reasonable results even up to t = 0.3 as also shown in figure 5(a). The 
underestimate of the wave height arises because the wave slope is large at this point. 

For very long times it is clear that (40) reduces to i%/i3t = 0 as all concentration 
gradients disappear. The film is then frozen in its final position. In reality this does not 
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happen : a disturbed film as in figure 5 (a) falls back in on itself if there is no longer any 
driving force. The terms that cause this - the 0 ( e 2 B )  terms which represent the 
flattening effects of gravity and the O(2)  effects representing the smoothing effects of 
surface tension in (27) - can then no longer be neglected. For the range of values under 
consideration here, this recovery occurs on a rather longer timescale (see 0 11.2) than 
the Marangoni flow, i.e. the recovery takes place very slowly. 

We can also derive asymptotic results by considering the situation where S < 1. This 
physically corresponds to a weakly surface-active alcohol. In this instance we simplify 
the expressions for the surface tension/concentration curve and its derivatives, 
obtaining 

writing s( + 1) for S. If we now seek solutions of the form 
y(C) w sc-yc2; y,(C) w s-s2c; y,,(C) w -s2, (48) 

(49) h(x, t) = h, + sh, + S2h2 

we obtain the following equations from (27): 

with initial conditions 

h0(x, 0) = 1 ; h,(x, 0) = 0; h,(x, 0) = 0. (52) 
Equation (50) can be solved in closed form and this yields 

1 P A  h, = 1; h - - i e x p  
l - 2  a 

where (53b) is essentially the same as (46). Equation (51) is solved by numerical 
quadrature as C and its derivatives are known functions. In figure 5 (b) we compare the 
results of this perturbation analysis with numerical solutions. The results are seen to be 
very good for all times. Referring back to (48), which exploits the smallness of s, we 
note that in fact it is sC that must be numerically small. It is thus necessary to check 
that sC,,, = s8A exp (- l)/P, is small. For this reason, the case where Pl = 1 requires 
smaller values of s to obtain the same accuracy as when 4 = 4. 

It is instructive to consider (40) for the case of small S(= s) by the method of 
characteristics. The following equations are obtained : 

dx ac 
- = -h(s-s2C)-, dt ax 

ac 2 a2c 
= :h2( - s2 + s3C) (a,) + ;h2(s - S ~ C )  - , dt ax2 

dh - 

(54) 

(55)  

If we seek solutions x = x,, + sxl ; h = h, + sh,, to lowest order the characteristic 
equation (54) reduces to dx,/dt = 0, which indicates that the characteristic curves are 
non-intersecting straight lines in the limit s --f 0. Thus the asymptotic solution can never 
represent a breaking wave : the characteristics never intersect. This can also be inferred 
from (50) and (51) due to the absence of nonlinear terms in h. 
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1 1. Numerical solutions 
We proceed now to examine the behaviour of the full evolution equation (27). In 

doing this we treat (27) as a model equation and examine its behaviour for different 
values of s2B and e without being too fussy as to whether these values arise in practice 
or not. In practice, s2B can be as small as lop5 in some instances but we only try to 
demonstrate the effects of the different terms and the trends resulting from varying the 
different parameters. 

As noted in 56, the driving force of (27) is given by the first-order terms as evinced 
by (40). This is a first-order nonlinear partial differential equation. A suitable initial 
condition is given by 

though the condition for the concentration is implicitly contained in (29). Numerically 
we deal with this condition by allowing the diffusion process to develop for some small 
time (e.g. t = lo-'), before flow occurs. The first-order terms of (27) can develop 
shocks, which physically corresponds to a steepening of the liquid free surface until a 
jump discontinuity is formed. The techniques for describing such a situation are well- 
known (Whitham 1974). Physically, the occurrence of such shocks indicates a 
breakdown of the mathematical model. Thus (27) describes the initial development of 
the wave front, but only remains valid for all time if the wave does not become too 
steep. We distinguish between three different cases : 

h(x, 0) = 1 ; C(X, 0) = 0; (56) 

case (i) no smoothing; 
case (ii) gravity smoothing via 0(s2B) terms; 
case (iii) gravity and surface-tension smoothing via O(e2B) and O ( 2 )  terms. 

1 1.1. Case ( i )  : Marangoniflow, no smoothing 
In this case s2B = 0, E = 0. The problem can be treated numerically by applying the 
method of characteristics. Equation (27) is hyperbolic and reduces to the following 
system of coupled ordinary differential equations : 

dx/dt = - hy, C,, 
dh/dt = :h2(yee CE + yc C,,). 

(57) 
(58) 

The first of these defines the characteristic curves where C(x, t )  and its derivatives are 
defined by (29). The corresponding initial conditions are : 

~ ( 0 )  = 6 ;  h(0) = 1, (59) 
where 6 runs from - co to + co. In practice we choose [E [ - 10,101 and (57) and (58) 
are solved numerically at a number of points in this interval. 

A typical set of results is shown in figure 6.  In general we distinguish between two 
generic cases : no-breaking and breaking, the latter possibility having already been 
briefly discussed in $7. Figure 6 indicates that the film height does not attain its 
minimum at the axis of symmetry (x = 0). The film does exhibit some thinning at this 
point but the minimum is obtained at about x = - 1.6 and this minimum moves 
outwards with the wave. The alcohol concentration is somewhat higher at x = 0 than 
x = - 1.6 and referring to figure 4, we can expect larger gradients in the surface tension 
(and hence a larger driving force and thinner film) at x = - 1.6. Referring to the small- 
time solutions of figure 5(u), we see that here the low point of the free surface does 
initially occur at x = 0 because for small times the y / C  curve is essentially a straight 
line so that higher concentrations give rise to a higher driving force. Note that, in the 
case of figure 6, the wave does not break if we carry on the integration further in time 
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FIGURE 7. Case (i) breaking, A = 1 ,  PI = 4, S = 4. Curves as for figure 6 .  

and eventually, owing to depletion of the alcohol source, flow stops. Figure 7, where 
Pl( = xH/pD,)  has been increased, shows that the outer side of the wave steepens and, 
in fact, eventually breaks. Thus increasing, for example, the Marangoni stresses x 
eventually leads to breaking. In a sense PI acts as a bifurcation parameter, loosely 
speaking, in this instance defining whether or not the wave breaks. In $7, it was 
suggested that increasing PI should lead to wave breaking: in the present instance the 
critical value occurs at about Pl = 3. This can be viewed in terms of the viscosity of the 
liquid: if the liquid is very viscous, breaking never occurs as the shear stresses are 
dissipated in the liquid; as p decreases a critical point is reached whereupon the 
dissipation is too small to prevent the liquid piling up on itself and finally breaking. For 
4 = 4, the time to breaking is about 1.0. However, we can obtain a so-called shock 
solution of (57), (58) by using the rule of equal areas (Whitham 1974). This removes 
multivaluedness from solutions such as those in figure 7 by inserting a vertical wave 
(shock) profile in such a way as to make the cut-off areas equal ( Jhdx  is conserved, 
see for example figure 12). Furthermore, as we shall see, these solutions are indeed very 
close to the ‘exact’ solutions to be attained in $911.2.1 and 11.2.2 and may be 
considered ‘ outer’ solutions. 
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FIGURE 8. Case (ii) breaking, A = 1, PI = 4, S = 4, eaB = 0.001. Curves as for figure 6. 

11.2. Solutions with smoothing 
1 1.2.1. Case (ii) : Marangonifiow with gravity smoothing 

In this instance the O(e2B) terms of (27) are included but e remains zero. Although 
in real situations, surface tension almost always plays a dominant role, it is interesting 
to compare results obtained with and without its effects. We thus need to solve a 
second-order parabolic partial differential equation obtained by setting e = 0 in (27) 
which we rewrite here for convenience : 

h, = hx, h2 + yx hh, + e2B(ihXx h3 + h'h;). 

To solve this equation, an initial condition and two boundary conditions are required, 
which can be expressed as 

h(x, 0) = 1, (61) 
ah/ax=O at x=+oo, (62) 

the last condition expressing the fact that the free surface remains horizontal at 00. 
Replacing this condition by h( 00, t )  = 1 gave essentially the same results. The 
numerical method of lines, whereby the x-derivatives are discretized resulting in a 
system of ordinary differential equations, was used. Different tolerances for the time 
differentiation were used up to lop5 in some cases though there was generally no 
discernible difference between results for a tolerance of lo-' and low5. For the x- 
derivatives different step lengths were tested and the solutions appeared to converge 
well. In general a step size of 5 x was adequate for the parameter ranges under 
consideration though in the neighbourhood of a shock a finer grid was necessary 
depending on the size of E'B. Referring to (60) we expect the formation of a shock to 
be prevented by the a2h/ax2 terms. The results of $9 indicate that a step size of about 
e2B is necessary to resolve such a shock. In order to save computational time, the 
position of the shock can be determined by a consideration of the 'outer' solutions of 
8 11.1. In this way a finer grid can be positioned wherever shock formation is occurring. 

We consider the same basic situations as before. Beginning with the no-breaking 
situation, the case corresponding to figure 6 with e2B = 0.1 gave results very similar to 
figure 6 with slightly flatter profiles, Figure 8 corresponds to the breaking case of figure 
7 for very small e2B and it is evident that the wave peak resembles the case (i) solutions 

22 FLM 254 
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FIGURE 10. Recovery of free surface under action of gravity after source is removed. A = l , O ,  
P, = 4, S = 4, E*B = 0.1. -, t = 2, ( A  = 1); ---, t = 10 (no source); ---, t = 50 (no source); 
..... , t = 120 (no source). 

but never breaks. In 99, the smoothing-layer thickness was predicted to be O(c2B) 
which is 0.001 for the case illustrated in figure 8. The smoothing effect of the gravity 
terms is well illustrated in figure 9, where the effect of decreasing the value c2B in case 
(ii) is compared to the corresponding case (i) solution where a shock has been inserted 
according to the equal areas rule. Note that as c2B+ 0 the smoothed case (ii) solution 
appears to approach the shock case (i) solution. 

Figure 10 shows a situation where recovery of the free interface occurs. In this 
instance a source ( A  = 1) is present from t = 0 to t = 2. A typical wave forms and 
moves outwards. At t = 2, the source is removed ( A  = 0) and the liquid is allowed to 
fall back in on itself under the action of gravity alone (in this instance) where c2B is 
quite large. Note that during recovery the liquid level at x = 0 first falls before rising 
as the trough located at about x = - 1 is filled, initially from both sides. We comment 
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FIGURE 12. Case (iii) breaking, A = 1, 4 = 4, S = 4, $B = 0.1, E = 0.1. --, t = 0.6; 
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also that the equation governing the recovery problem requires rescaling (p, = 
p*/pgH, u, = u*pL/pgH3 - illustrating very slow recovery for small H- and t ,  = 
pgH3t*/pL2) resulting in a nonlinear diffusion equation : h, = +[h3h,.,. 

Figure 11 gives an illustration of the possibilities for creating different interface 
shapes. In this instance a second source of strength 2 has been placed at x = - 1 and 
the wave profile calculated. The results are of course no longer symmetrical about 
x = 0. 

11.2.2. Case (iii): Marangoniflow, gravity, surface-tension smoothing 
In this instance, we include all the terms of (27). When compared with case (ii), the 

results are qualitatively similar. For the situation corresponding to figure 6 with no 
breaking, the plots (not reproduced here) are very similar. Proceeding to breaking 
situations, figure 12, for quite large surface tension ( E  = lop1), does not come close to 
breaking while small oscillations develop downstream. In figure 13 6 has been 
decreased giving rise to a higher thinner peak. Note that the oscillations have more or 

22-2 
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FIGURE 13. Case (iii) breaking, A = 1, PI = 4, S = 4, e2B = 0.01, E = 0.01. Curves as in figure 12. 
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FIGURE 14. Evolution of the free surface with surface tension as the only smoothing process. 
A = 1, P, = 4, S = 4, eZB = 0, e = 0.1. Curves as in figure 12. 

less disappeared suggesting that they are caused by the surface-tension terms. The 
analysis of $9 indicated that the smoothing-layer thickness is O ( E ~ )  M 0.21 in figure 12, 
while its actual thickness looks to be about 0.6 (though figure 12 also suggests that 
more than simple smoothing-layer behaviour may occur here). In figure 13 the 
predicted smoothing-layer thickness is (0.01): M 0.05 while the actual thickness looks 
to be about 0.2. 

Qualitatively the addition of surface-tension terms has modified the shock structure 
somewhat and produced slight changes in the global picture. In the analogous situation 
with the Korteweg4e Vries and Burgers equations, the different smoothing terms 
show quite different long-term behaviour in that the dispersive third-derivative terms 
of the former equation can lead to oscillations away from the steep region while the 
effect of the diffusive second-derivative terms of the latter remain localized at points 
where the profile steepens. For comparison we remove some of the second-derivative 
diffusive terms in (27) by setting e2B = 0. A typical result is shown in figure 14 where 
some slight oscillations can be seen downstream of the steepening wave. Similar 
oscillations were noted in figure 12 above. These are not numerical in origin; different 
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sized grids yield the same result. The situation bears some resemblance to that arising 
during the development of an undular bore (Peregrine 1966) or wave steepening in the 
Korteweg-de Vries equation with artificial (small) damping (Whitham 1974). In view 
of the analysis of $9 and in particular (36), we expect similar results for the case when 
E = 0.1, B = 1, because if $9 is correct, the O(s2B) terms should remain negligible (i.e. 
O(N)  in the terminology of 5 5 )  in this case. Numerical solutions verify this, the results 
(not reproduced here) being virtually indistinguishable from figure 14 where B = 0. 

Finally we comment that the case of recovery under the influence of gravity and 
surface tension (with s2B = E = 0.1) qualitatively resembles a flattened version of figure 
10. 

12. Concluding remarks 
By the use of scaling arguments, we have reduced the problem of the evolution of 

a free liquid surface under the action of alcohol-vapour-induced Marangoni effects to 
a single nonlinear partial differential equation. The results only apply over a small 
portion of parameter space but this approach has allowed us to highlight the features 
of this type of flow for very thin films. A first-order partial differential equation models 
the process, at least qualitatively, even in the case where shocks arise and suitable 
discontinuities must be inserted. The concepts of boundary-layer ideas borrowed from 
singular perturbation theory are used to simplify the numerical problem. The resulting 
equation (27) can hardly be further simplified, yet is asymptotically correct to leading 
order. 

An examination of the results indicates that solutions are divided into two main 
classes : breaking (in the theoretical sense) and non-breaking. The critical parameter 
controlling this process is P, = x H / D , p .  If this is large enough Marangoni stresses 
completely overcome viscous effects and smoothing effects become important. 

Precise experimental verification of the model developed in this paper would not be 
easy. The emphasis here has been on asymptotic simplification while concentrating on 
just one small parameter: the aspect ratio, other parameters being assumed O(1) unless 
otherwise noted. However, when the model was initially being developed, a number of 
bench-top experiments was carried out to help develop an understanding of the 
processes involved. The polished side of an approximately circular silicon wafer (radius 
5 cm) was covered with a relatively thick water film for ease of observation. The 
average film thickness, estimated by weighing, was about 9 pm. A drop of isopropanol 
was then suspended from the end of a pipette at a distance of about 1 cm above the 
water surface. A more or less circular wave was seen to develop and more radially 
outwards centred about the point directly below the alcohol drop and leaving a thinner 
film behind. The characteristic speed of propagation was estimated to be about 
1 cm s-l. Though lacking refinement, this experiment does allow us to check if the 
scales in (10) are reasonable. Takingp = Nm-l, 
H = 10 pm, we obtain a characteristic timescale of about 0.25 s and characteristic 
velocity of about 4 cm s-l, so the balances represented in (10) appear correct. 

Further work in this area will include consideration of dip-coating-type problems in 
the presence of alcohol vapour as in figure 1. This problem is rather more difficult than 
that considered in this paper as the curvature of the liquid free surface will play an 
important role in the diffusion of the alcohol into the liquid. It is clear that gravity will 
play no role in the smoothing out of possible discontinuities: this can only be carried 
out by surface tension and may lead to qualitatively different shock structures than 
obtained in this paper. 

Kg m-l s-l, L = 1 cm, x = 4 x 
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